Uncertainty Quantification in Reservoir Simulation Using Modern Data Assimilation Algorithm
نویسندگان
چکیده
Production forecasting using numerical simulation has become a standard in the oil and gas industry. The model construction process requires an explicit definition of multiple uncertain parameters; thus, outcome modelling is also uncertain. For reservoirs with production data, uncertainty can be reduced by history-matching. However, manual matching procedure time-consuming usually generates one deterministic realization. Due to ill-posed nature calibration process, cannot captured sufficiently only model. In this paper, quantification carried out for gas-condensate reservoir described. ensemble-based approach was used ES-MDA algorithm, conditioning models observed data. Along results, author described solutions proposed improve algorithm’s efficiency analyze factors controlling uncertainty. As part various geological hypotheses regarding presence active aquifer were verified, leading important observations about drive mechanism analyzed reservoir.
منابع مشابه
Uncertainty Quantification of a Fractured Reservoir Using Distance-based Method and Streamline Simulation
متن کامل
Using Extended Kalman Filter for Data Assimilation and Uncertainty Quantification in Shock-Wave Dynamics
Model assimilation of data strives to determine optimally the state of an evolving physical system from a limited number of observations. The present study represents the first attempt of applying the extended Kalman filter (EKF) method of data assimilation to shock-wave dynamics induced by a high-speed impact. EKF solves the full nonlinear state evolution and estimates its associated error-cov...
متن کاملUncertainty quantification of reservoir performance predictions using a stochastic optimization algorithm
The simultaneous perturbation stochastic approximation (SPSA) algorithm is modified to obtain a stochastic Gaussian search direction (SGSD) algorithm for automatic history matching. The search direction in the SGSD algorithm is obtained by simultaneously perturbing the reservoir model with unconditional realizations from a Gaussian distribution. This search direction has two nice properties: (1...
متن کاملReservoir Multiscale Data Assimilation Using the Ensemble Kalman Filter
In this paper we propose a way to integrate data at different spatial scales using the ensemble Kalman filter (EnKF), such that the finest scale data is sequentially estimated, subject to the available data at the coarse scale (s), as an additional constraint. Relationship between various scales has been modeled via upscaling techniques. The proposed coarse-scale EnKF algorithm is recursive and...
متن کاملfault location in power distribution networks using matching algorithm
چکیده رساله/پایان نامه : تاکنون روشهای متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روشها در شبکه توزیع به دلایلی همچون وجود انشعابهای متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تکفاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energies
سال: 2023
ISSN: ['1996-1073']
DOI: https://doi.org/10.3390/en16031153